Высокорезистивные материалы

Раджабов Евгений Александрович

Лекция 12

Апконверсия диэлектриков

По мотивам доклада

Эффективная апконверсия в щелочноземельных фторидах, активированных ионами Yb³⁺-Ho³⁺

Е. А. Раджабов, Р.Ю. Шендрик

ЛЛФ 2018,2-7 июля, Аршан

План

- 1. Введение
- 2. Методика эксперимента
- 3. Спектры свечения
- 4. Спектры возбуждения
- 5. Спектры поглощения
- 6. Эффективность апконверсии
- 7. Заключение

Введение

F. Auzel

П.П.Феофилов

Поиск эффективных люминофоров преобразующих ближнее инфракрасное излучение в видимый свет остается актуальной задачей.

Ион Yb³⁺ является эффективным сенсибилизатором для ионов Ho³⁺, Tm³⁺, Er³⁺ из-за его большого сечения поглощения около 980 нм и эффективного переноса энергии возбуждения.

Детальные механизмы переноса и структура дефектов требуют исследований.

Figure 3. Various two-photon upconversion processes with their relative efficiency in considered materials.

Chem. Rev. 2004, 104, 139-173

Upconversion and Anti-Stokes Processes with f and d lons in Solids

François Auzel

absorption, (g) energy transfer upconversion, and (h) sensitized energy transfer upconversion. The dotted lines indicate nonradiative energy transfer processes, the dashed horizontal lines indicate virtual states, and the arrows indicate excitation (upward) or emission (downward) transitions.

Эксперимент

Для возбуждения анти-стоксовой люминесценции использовался полупроводниковый лазерный модуль 980 нм с измеренной мощностью 69 мВт.

В ряду изученных пар лантаноидов Yb-RE (RE - Pr, Nd, Sm, Dy, Ho, Er, Tm) только Yb-Ho, Yb-Er и Er обладали эффективной видимой апконверсионной люминесценцией. Слабой видимой апконверсионной люминесценция обнаружена также в парах Yb – Tm, Yb-Tb.

Нами исследована эффективная апконверсия в кристаллах CaF_2 , SrF_2 , BaF_2 активированных YbF₃-HoF₃ с концентрациями в интервале 0.01 до 10 моль. %.

Эксперимент

 $CaF_{2} - 0.3 \% ErF_{3}$

SrF₂- 1% ErF₃

BaF₂- 0.3 % ErF₃

Спектры поглощения

Спектры свечения

$p_{\rm SA} = \frac{1}{\tau_{\rm S}} \left(\frac{R_0}{R} \right)^6$

Диаграммы уровней Yb³⁺, Ho³⁺, Er³⁺

Спектры свечения

при возбуждении 532 нм, попадающем в край полосы Ho³⁺, значительно отличаются.

Спектры возбуждения

Зависимость от мощности

Зависимость от концентрации Yb-Ho

 $W_{13} \approx N_{\rm S} *^2 W_{\rm SA}^2 = N_{\rm S}^2 W_{12}^2 W_{\rm SA}^2$ for two-ion APTE

Зависимость от концентрации Er

$$\eta_{S,n} = \frac{P_{\rm em}}{(P_{\rm ex})^{n-1} \text{ (absorbed IR power)}} \quad (\mathrm{mW/cm}^2)^{-(n-1)}$$

S.Fisher et.al. J.Appl. Phys. 118, 193105 (2015)

Эффективность апконверсии

matrix	ions	process	order <i>n</i>	temp (K)	efficiency (cm²/W) ⁿ⁻¹	ref
YF3	Yb ³⁺ -Er ³⁺	APTE (ETU)	2	300	$\simeq 10^{-3}$	2
SrF ₂	Er^{3+}	ESA	2	300	$\simeq 10^{-5}$	2
YF ₃	Yb ³⁺ -Tb ³⁺	coop. sensitiz.	2	300	$\simeq 10^{-6}$	2
YbPO₄	Yb ³⁺	coop. lumin.	2	300	$\simeq 10^{-8}$	13,61
KDP		SHG	2	300	$\simeq 10^{-11}$	2
CaF ₂	Eu^{2+}	two-phot. absorpt.	2	300	$\simeq 10^{-13}$	2
YF ₃	Yb ³⁺ -Er ³⁺	APTE (ETU)	2	300	2.8×10^{-1}	201
vitroceramics	Yb ³⁺ -Er ³⁺	APTE (ETU)	2	300	2.8×10^{-1}	51
NaYF4	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	3.4×10^{-2}	158
YF ₃	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	4.25×10^{-2}	158
vitroceramics	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	8.5×10^{-2}	158
NaYF4, Na ₂ Y ₃ F ₁₁	Yb ³⁺ -Er ³⁺	APTE (ETU)	2	300	10 ⁻² to 2 × 10 ⁻⁴	191
NaYF ₄	Yb ³⁺ -Er ³⁺	APTE (ETU)	2	300	2.5×10^{-4}	16
NaYF ₄	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	5.5×10^{-2}	191
NaYF4	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	3×10^{-7}	16
fluorohafnate glass	Yb ³⁺ -Tm ³⁺	APTE (ETU)	2	300	6.4×10^{-3}	129
fluorohafnate glass	Yb ³⁺ -Ho ³⁺	APTE (ETU)	2	300	8.4×10^{-4}	129
vitroceramics	Yb ³⁺ -Tm ³⁺	APTE (ETU)	2	300	3.5×10^{-1}	157
vitroceramics	Yb ³⁺ -Tm ³⁺	APTE (ETU)	3	300	3.6×10^{-3}	157
ThBr ₄	U4+	ESA	2	300	2×10^{-6}	161
SrCl ₂	Yb ³⁺ -Yb ³⁺	coop. lumin.	2	100	1.7×10^{-10}	80
SrCl ₂	Yb ³⁺ -Tb ³⁺	coop. sensitiz.	2	300	8×10^{-8}	80
SrCl ₂	Yb ³⁺ -Tb ³⁺	coop. sensitiz.	2	100	1.8×10^{-8}	80

Table 1. Available Measured Normalized Absolute Efficiencies for Various Upconversion Processes

Эффективность апконверсии

Tab. 6.1 Typical examples of the mechanisms in which higherenergy emission light is generated from the original excitation light. The processes are schematically shown in the parts of Fig. 6.1 as indicated, and are further discussed in the text.

Fig. 6.1	Mechanism	Typical example	Efficiency
(a)	Anti-Stokes Raman	Silicon crystals	${\sim}10^{-13}{ m cm}^2{ m W}^{-1}$
(b)	2-Photon excitation	CaF ₂ :Eu ²⁺	${\sim}10^{-12}{\rm cm}^2{\rm W}^{-1}$
(C)	SHG	KH ₂ PO ₄ crystals	${\sim}10^{-11}{\rm cm}^2{\rm W}^{-1}$
(d)	Cooperative luminescence	YbPO ₄ :Yb ³⁺	${\sim}10^{-8}{cm^2}{W^{-1}}$
(e)	Cooperative sensitization	YF ₃ :Yb ³⁺ ,Tb ³⁺	${\sim}10^{-6}\text{cm}^2\text{W}^{-1}$
(f)	ESA	SrF ₂ :Er ³⁺	${\sim}10^{-5}\text{cm}^2\text{W}$
(g)	ETU	YF ₃ :Er ³⁺	${\sim}10^{-3}{\rm cm}^2{\rm W}^{-1}$
(h)	Sensitized ETU	NaYF ₄ :Tm ³⁺ ,Yb ³⁺	$\sim 10^{-1} \mathrm{cm}^2 \mathrm{W}^{-1}$

Luminescence From Theory to Applications Edited by Cees Ronda 2008 Wiley-VCH Verlag GmbH & Co. KGaA

Заключение

В спектрах люминесценции нами наблюдались полосы Ho³⁺ при 542 нм (⁵S₂,⁵F₄-⁵I₈), 650 нм (⁵F₅-⁵I₈), 752 нм (⁵S₂,⁵F₄-⁵I₇) и 1150-1180 нм (⁵I₇ - ⁵I₈), с развитой структурой вследствие взаимодействия с кристаллическим полем. Структуры полос Ho³⁺ при возбуждении лазером 980 нм (апконверсия) и при возбуждении 532 нм, попадающем в край полосы Ho³⁺, значительно отличаются. Все это вызвано близким расстоянием между ионами Yb-Ho в апконверсионном центре, что приводит к возмущению переходов в ионе гольмия.

Обнаружена сильная экспоненциальная зависимость интенсивности апконверсионного свечения Ho³⁺ от концентрации Yb³⁺ и слабая зависимость от концентрации гольмия.